Imaging of white matter lesions.
نویسندگان
چکیده
Magnetic resonance imaging (MRI) is very sensitive for the detection of white matter lesions (WML), which occur even in normal ageing. Intrinsic WML should be separated from physiological changes in the ageing brain, such as periventricular caps and bands, and from dilated Virchow-Robin spaces. Genuine WML are best seen with T2-weighted sequences such as long TR dual-echo spin-echo or FLAIR (fluid-attenuated inversion recovery); the latter has the advantage of easily separating WML from CSF-like lesions. Abnormal T2 signal in MRI is not specific, and can accompany any change in tissue composition. In the work-up of WML in small vessel disease, magnetic resonance angiography can be used to rule out (concomitant) large vessel disease, and diffusion-weighted MRI to identify new ischaemic lesions (amidst pre-existing old WML). The differential diagnosis of WML includes hereditary leukodystrophies and acquired disorders. The leukodystrophies that can present in adult age include metachromatic leukodystrophy, globoid cell leukodystrophy, adrenomyeloneuropathy, mitochondrial disorders, vanishing white matter, and cerebrotendinous xanthomatosis. These metabolic disorders typically present with symmetrical abnormalities that can be very diffuse, often with involvement of brainstem and cerebellum. Only the mitochondrial disorders tend to be more asymmetric and frequently involve the grey matter preferentially. Among the acquired white matter disorders, hypoxic-ischaemic causes are by far the most prevalent and without further clinical clues there is no need to even consider the next most common disorder, i.e. multiple sclerosis (MS). Among the nonischaemic disorders, MS is far more common than vasculitis, infection, intoxication and trauma. While vasculitis can mimic small vessel disease, MS has distinctive features with preferential involvement of the subcortical U-fibres, the corpus callosum, temporal lobes and the brainstem/cerebellum. Spinal cord lesions are very common in MS, but do not occur in normal ageing nor in small vessel disease.
منابع مشابه
The Assessment of Structural Changes in MS Plaques and Normal Appearing White Matter Using Quantitative Magnetization Transfer Imaging (MTI)
Introduction: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS), affecting mostly young people at a mean age of 30 years. Magnetic resonance imaging (MRI) is one of the most specific and sensitive methods in diagnosing and detecting the evolution of multiple sclerosis disease. But it does not have the ability to differentiate between distinct histopathologic...
متن کاملPathological Assessment of Brain White Matter in Relapsing-Remitting MS Patients using Quantitative Magnetization Transfer Imaging
Introduction: Multiple sclerosis (MS) is characterized by lesions in the white matter (WM) of the central nervous system. Magnetic resonance imaging is the most specific and sensitive method for diagnosis of multiple sclerosis. However, the ability of conventional MRI to show histopathologic heterogeneity of MS lesions is insufficient. Quantitative magnetization transfer imaging (qMTI) is a rel...
متن کاملEvaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies
Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...
متن کاملA Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملThe Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملCharacterization of white matter lesions in multiple sclerosis and traumatic brain injury as revealed by magnetization transfer contour plots.
BACKGROUND AND PURPOSE Magnetization transfer imaging provides information about the structural integrity of macromolecular substances, such as myelin. Our objective was to use this imaging technique and contour plotting to characterize and to define the extent of white matter lesions in multiple sclerosis and traumatic brain injury. METHODS Magnetization transfer imaging was performed of 30 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebrovascular diseases
دوره 13 Suppl 2 شماره
صفحات -
تاریخ انتشار 2002